

Product Data Sheet

Technical Brochure

HL-EO (BAS)

The HL-EO is a cylindrical reactor that has unparalleled efficiency in removing scaling constituents, bio-fouling, and microorganisms in cooling tower systems.

Key Advantages

- •
- Chemical-free Process Fully Automated & Modularized System Compact & Versatile Design
- •
- Ease of maintenance

Product Capabilities

The HL-EO is capable of reducing microorganisms by up to 99.5% and hardness by up to 40%. Note that values presented are subjected to blowdown water quality.

Specifications by Flow Rate		Lite	Standard	Maxi	Plus*
Dimensions	Units	1.0m³/hr	2.0m³/hr	3.0m³/hr	Custom
Outlet Height (A)	mm	980	1460	1450	
Inlet Height (B)	mm	120	140	180	
Margin between Inlet / Outlet & Flange (C)	mm	56	60	70	
Inlet / Outlet Size (D)	mm	25.4	25.4	25.4	
Vessel Diameter (E)	mm	267	318	370	
Vessel Height (H1)	mm	1150	1650	1650	
Overall Height (H2)	mm	1300	1800	1800	
Vessel Pipe Thickness (t)	mm	12.7	15.1	18	
Vessel Weight without Water	kg	20	45	60	

Note that calculations are based off a specific hydraulic retention time. Hydroleap is always looking to improve, therefore the design may be altered and specifications may change.

*Customized designs can be discussed to align with your specific requirements.

Product Gallery

Construction Materials

Component	Material
Housing Vessel	PVC - Polyvinyl Chloride
Cathode	Premium Grade Titanium
Anode	Blended Metal Oxide Coated Titanium

Operating Parameters

*Variable	Units		
Influent Temperature Range	25 - 35 °C	45 - 95 °F	
Maximum Operating Temperature	35 °C	95 °F	
Internal Pressure Range	0.2 - 0.5 bar	2.9 - 7.3 psi	
Maximum Operating Pressure	0.5 bar	7.3 psi	
Power Rating Range	0.3 - 0.5 kWh/m³	0.0003 - 0.0005 kWh/L	
Minimum Power Rating (kWh/m³)	0.3 kWh/m³	0.0003 kWh/L	

*Note that the listed operating parameters are subject to the limitations of the materials currently employed. However, we offer the flexibility to enhance these limits and accommodate custom materials through specialized arrangements.

Further Information

The HL-EO employs an array of specialized electrodes and a controlled electrical current to promote the removal of scaling and fouling via AOP. It is also capable of eliminating organics, heavy metals, and other harmful substances, by transforming them into harmless byproducts.

With its high efficiency, scalability, and versatility, the electrooxidation reactor offers a sustainable and costeffective approach to address water pollution challenges and enhance overall process efficiency in various industries.

Contact Us

For further enquiries, reach out to us via the following:

84 Toh Guan Rd E, #03-08/09 Singapore Water Exchange, Singapore 608501

Contact.us@hydroleap.com

www.hydroleap.com